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Introduction 
he paper is divided into four sections. 
In the first section, we describe the 

1 
raised by 

background to our work: the domain in 
which our inference engine was 
intended to function, and the issuer 
the special problems of that domain. In 

the second section, we describe in general terms 
the prototype inference engine we designed tc 
meet these problems, concentrating particularlj 
on the graphical rule interface, and the ex. 
planation generator. We have concentrated the 
technical material in the third section, where we 
present the algorithm for the inference process, 
and a semantics for the logic used. In the final 
section we discuss issues relating to the represen- 
tation of legislation. 

1. Background 
The Department of Health and Social Security 
(DHSS) is charged, among other things, with 
administering the range of welfare benefits estab- 
lished by legislation and with advising Ministers 
on possible changes and additions thereto. The 
Alvey-DHSS Large Demonstrator project aims 
to explore the potential of Intelligent Knowledge 
Based Systems for assisting the Department in 
these tasks. In the present paper we focus on just 
one area of potential support: the process of 
adjudicating benefit claims as carried out in Local 
Offices of the DHSS by Adjudication Officers. 

We describe in detail a system (which we call 
DTrees) that implements a novel way of struc- 
turing legal rules. Instead of a simple 
IF. .THEN.. . structuring of rules this system 
employs an IF..THEN..UNLESS.. format. In- 
deed, the ‘unless’ begins to predominate until we 
see the structure in a system of legal rules as 
exactly a structure of common cases and excep- 
tions proceeding through several levels from the 
ordinary to the recondite. 

The ideas presented here were developed 
within the Large Demonstrator project as one of 
several concurrent avenues of investigation into 
possible support for Adjudication Officers within 
the DHSS. It is not possible within the scope of 
this paper to discuss in any great detail the 
operation of the Local Office system of the 
DHSS. However, some discussion is necessary 

both to describe the problems to whlch the 
DTree system offers (at least partial) solutions 
and to forestall any impression that we claim 
more for the system than we actually do. 

Basically, the context in which Local Office 
decision making occurs is one which involves the 
application of a large and interrelated body of 
rules of varying complexity and difficulty and, 
indeed, accessibility. Moreover, the Local Office 
staff who must determine the effect of these rules, 
themselves occupy widely varying roles and 
exhibit considerably different degrees of ex- 
pertise. As a result the Local Office context is one 
in which both the rules which have to be applied 
and the roles of those who have to apply them can 
be ambiguous and even contradictory. Addition- 
ally, information coming into the system from 
claimants is often diverse both in structure and 
type. Therefore any interaction between client 
and Local Office will involve problems of defini- 
tion and explanation. The matching of relevant 
rules to particular cases is by no means as simple 
as the codified nature of the rules might suggest 
PI. 

We are aware of these difficulties and do not 
suggest that the present system removes them. 
Furthermore, any final system of support would 
have to include components hardly resembling a 
rule driven system at all. Indeed possibilities for 
such support are being actively considered in the 
Project, for example [2], but we shall not consider 
them further here. On the other hand it does not 
do to overstate them. We think that a large pro- 
portion of cases are straightforward enough or, 
even if this be disputed, a large proportion will be 
treated as straightforward. That is inevitable 
given the volume of cases and the time and staff 
available to decide them. There is thus a place for 
a rule driven system to render as speedy and 
efficient as possible the bulk of routine cases and 
thereby free time for the consideration of difficult 
ones. 

Adjudication Officers must decide claimants’ 
eligibility over a wide range of welfare benefits. 
They do not work as such all the time. In fact only 
about 20% of their working day is spent in adjudi- 
cation. Furthermore, there is a very large 
volume of work to be done, so they work under 
considerable pressure. 

The Adjudication Process is independent of 
the Secretary of State and has its own levels of 
authority culminating in the Chief Adjudication 
Officer. He is supported by the Office of the 
Chief Adjudication Officer (O.C.A.O.) which 
has a general supervisory role over the adjudi- 
cation process. It monitors the quality of the 
decision making of the Adjudication Officers, 
issues written guidelines to assist Adjudication 
Officers in their decision making, and distributes 
information about changes in the bmefit rules, 
This last point needs emphasis. 

The rules concerning welfare benefits are fre- 
quently modified, both to correct local anomalies 
and of course to reflect more substantial political 
changes in the provision of welfare. A static 
support system then, constructed at considerable 
expense around a fured set of rules, cannot be use- 
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I 
ful because it will become outdated almost 
immediately. What is required is a system that 
can be modified and updated easily by the offi- 
cials in the O.C.A.O. 

The general context is then of a (very) large 
organisation in which relatively numerous junior 
officials apply extensive and frequently changed 
legislation in limited time under the supervision 
of relatively few senior officials. Fairly obviously, 
the task of an IKBS support system is to maintain 
and if possible improve the decision making 
quality of the former and render more effective 
the supervision exercised by the latter. The 
present system is designed to contribute a 
component to that goal. 

We have aimed to design a system which would 
access the legislative rule base (however extensive 
it may be), which would propose a decision for 
the case in question and then draft a letter 
explaining to the claimant that decision. If the 
case was straightforward the Adjudication 
Officer would accept the suggestion offered by 
the machine. Otherwise s/he can study a graphi- 
cally presented trace of the machine’s inference 
processes to assist M h e r  in formulating an al- 
ternative decision. Traces are notoriously un- 
readable, but the graphic technique described 
below renders them, we believe, scrutable and 
hence useful. 

Such a system would relieve Adjudication 
Officers from the drudgery of hand drafting 
standard form letters for straightforward cases. 
Instead the system would do this - using indeed 
more extensive and informative letters (originally 
prepared in O.C.A.O.) than is possible given the 
need to hand draft. The advantages for the 
claimant are: a better explanation of hidher case 
and security against ‘careless mistakes’; for the 
O.C.A.O. they are the ability to change and 
update the system far more quickly, for the 
Adjudication Officer freedom from drudgery and 
the time to exercise judgment on the more 
problematic cases. 

I 2. Using the system 
The object of this section is to provide the reader 
with an informal introduction to the logic of the 
DTree system, and to the ideas behind it, by 
describing the construction and use of a small 
knowledge base. We will briefly describe an 
experimental implementation in order to make 
the ideas clear. The more technical aspects will be 
covered in the next section. 

I 2.1 Arboretum 

are produced is shown as an animated graph. Thc 
user can ask the system how the value of an: 
particular feature was arrived at, and what tha 
value was. 

One of the most significant advantages W I  
would claim for the system is that it is extremel: 
simple for relatively naive users to builc 
knowledge bases. Knowledge engineering wit1 
this system requires no understanding of com 
puter language, no very abstruse knowledgc 
about the machine, no complex calculation o 
weightings and probabilities. The logic i: 
designed to facilitate a methodology which W I  
call ‘elicitation by exception’. 

2.2 Elicitation by exception 
The knowledge engineer’s task, using thir 
methodology to build a rule, is simply to ask: is : 
given predicate normally true? If it were true 
would it normally be a sufficient condition? Anc 
having got this far, is there anything at all whicl 
would overturn the decision? If nothing could 
the process terminates; but if there is some mort 
abstruse factor which could still cause a change o 
mind, then that is added as a new condition anc 
once more one asks if there is anything furthei 
that could cause a change of mind. Thus wt 
proceed down a conceptual tree where at eack 
level the decision just made is reversed. 

Intuitively the deeper the level, the mort 
unlikely the situations that occupy that level. It it 
our suggestion that the structure of exception? 
that can explicitly be recovered by the knowledgc 
engineer in this way is what is implicitly anc 
imperfectly represented by the certainty factor: 
in classical expert systems. 

We believe that the use of a graphical interface 
also contributes greatly to simplicity of use. It is 
interesting to note that this approach ha: 
similarities to that followed by Richer and 
Clancey in Guidon-Watch [ 5 ] .  These similarities 
will be discussed later, for the moment we jusl 
observe that both these graphical interfaces 
exploit the facilities provided by InterLisp-D on 
the 1100 series machines, which include a large 
bit-mapped display, software support foi 
window/icon/mouse user interfaces, and sophis- 
ticated tools for building graphs which can be 
manipulated by the user. 

To illustrate the use of the system, let us 
assume that, as an officer in O.C.A.O., we 
want to build a rule for ‘Entitled to Widow’s 
Allowance’. We will encode from the Social 
Security Act 1975 161, chapter 14, section 24, as 
amended by the Social Security (Miscellaneous 
Provisions) Act 1977, chapter 5, section 22(2). 
This reads: 

24.-( 1) A woman who has been widowed 
shall be entitled to widow’s allowance at the 
weekly rate specified in relation thereto in 
Schedule 4, Part I, paragraph 5 ,  i f  

(a) she was under pensionable age at the 
time when her late husband died, or he was 
then not entitled to a Category A retirement 
pension (section 28); and 

(b) her late husband satisfied the con- 
tribution requirement for a widow’s 

The implementation, called ‘Arboretum’, which 
was written in InterLisp-D [3] using Loops 141 
object oriented facilities, is designed to allow 
people to manipulate DTree structures through 
graphical representations: to build arbitrarily 
large knowledge bases, to use these to provide 
answers to questions about objects in domains 
admitting incomplete information - and to 
provide natural language explanations of these 
answers.. The inference process by which answers 
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allowance specified in Schedule 3, Part 1, 
paragraph 4. 
(2) The period for which widow’s allowance 
shall be payable shall be the 26 weeks next 
following the husband’s death: 

Provided that the allowance shall not be 
payable for any period after the widow’s 
death or remarriage or for any period 
during which she and a man to whom she is 
not married are living together as man and 
wife. 
In addition to the legislation itself, the officer 

would be required to take into account the case 
law, and previous decisions by the Social Security 
Commissioners. An example here would be the 
iecision R(G) 2/79 171, which precludes a 
:laimant from receipt of benefit where the entitle- 
ment, based on her status as a widow, is the direct 
result of an unlawful act of murder or man- 
slaughter even though all the statutory require- 
ments may be satisfied and benefit would other- 
wise be paid. 

It is clear that the above fragment - in 
:ommon with much legislation - involves a 
structure of exceptions. We can see immediately 
that a possible structuring takes the form: entitle- 
ment false, unless entitling conditions satisfied, 
in which case true, unless overriding consider- 
ation, in which case false. We can represent this 
in a DTree. 

2.3 Building the rule 
The first action is to bring up a display for the 
feature ‘Entitled to Widow’s Allowance’. We do 
this by selecting it from the ‘Open Display’ 
menu, or, if it does not already exist, by selecting 
‘New Feature’. Then we must introduce the 
feature. As no rule yet exists, the display will 
show just one (root) node. 

To extend it, we point to the root node and 
select ‘Add Node’. We again select ‘New Feature’ 
from the features menu that appears, and use the 
feature inspector which then opens to set up the 
properties of the next feature, such as its name 
(‘Satisfies conditions for Widow’s Allowance’), 
whether it is normally true in the world and 
whether it is something the user can reasonably 
be asked about. This process is repeated for 
further nodes to achieve a rule like this: 

Before going any further, it will be useful to 
discuss the difference between a ‘feature’ and a 
‘node’. A ‘feature’ is a predicate known to the 
system; it is something which may be true of an 
object in the domain. For instance, in the Adjudi- 
cation Officer’s domain, ‘widow’ is something 
that can be true of a person. Each feature occurs 
just once in the system: it is global. As a funda- 
mental building block, it may have properties: 
the most important of these is that it may have a 
rule structure, a ‘DTree’, which may be 
evaluated in order to establish its value. Another 
significant property, which all features must 
have, is a ‘default value’: the feature must know 
whether it is usually true, or false, in the domain. 

But within a particular DTree we need to be 
able to refer to various features, which we do 
using ‘nodes’. Nodes are nothing more than 
components of DTree structures. Each node 
carries local information, the most important 
items being the feature which it references, and 
its ‘colour’, which is the advice the node gives to 
the top node of the rule to which it belongs. 

Colour is represented by the arithmetic symbol 
following the name of the feature in the display. 
As the basic connective of the system - rep- 
resented by an edge between nodes - is an unless 
clause, the system by default alternates ‘ t- ’ (yes) 
and ‘-’ (no) nodes. Since most features are 
usually not present we begin with a ‘minus sign’ 
(default values can be changed by pointing to the 
node and selecting ‘Change Colour’). So the basic 
way to read a DTree rule for a feature is ‘feature 
not present(minus sign), unless.. . , .( + ) unless 
(minus sign). . . . .’ to whatever depth you please. 

So we can read the rule given as ‘Entitled to 
Widow’s Allowance is false unless Satisfies 
conditions for Widow’s Allowance is true, in 
which case Entitled to Widow’s Allowance is true 
unless any of (the overriding considerations) are 
true’. 

Now we must encode a rule for ‘Satisfies 
conditions.. .’. We will subsume ‘woman’ undei 
‘widow’ at this stage, later writing a rule to define 
‘widow’ as a woman whose husband has died 
during their marriage. Examination of the Acl 
shows that a possible encoding would see the con- 
junction of widowhood and husband’s contri ’ 
bution record as being the primary condition. 
with other considerations being secondary: othei 
encodings are of course possible, but this on€ 

Figure 1. Rule for “Entitled to Widow’s Allowance” 
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tends to preserve the intuitive idea of putting the 
most probable conditions highest in the tree, and 
:incidentally) tends to promote efficiency of 
:xecution. Thus we would have a rule as 
indicated in Figure 2. 

2.4 Evaluating the rule 
Having built a rule, we need to be able to apply it 
to a case. Before this could be done seriously, 
explanation fragments would have to be added to 
the nodes. The details of this will be described 
later. For now, assume that it has been done, and 
imagine that we want to know of some particular 
claimant , whether they are entitled to widow’s 
allowance. Point to a node for ‘Entitled to 
Widow’?; Allowance’ and select ‘Run Feature’. 

The inference engine will now evaluate the 
rule, calling other rules as needed to determine 
particular values, and report whether the 
Aaimant is entitled to the benefit. It will do so by 
searching the rule structures passing through 
snly those nodes whose features evaluate to true; 
2s it searches, it will emphasize, on the display, 
the edge: along which it is searching. As each 
feature is first encountered, if the ‘ask user?’ flag 
3f the feature is ‘yes’, it will ask the user for the 
value for the feature, it will check whether the 
feature owns a rule structure, and it if does, will 
:valuate that. As each new rule is called, it will be 
displayed, attached to the previous display so that 
it overlays the node from which it was called. If 
no rule exists, or if (as should not happen) the rule 
is actually in use further up the recursion stack, 
the default value will be taken. When the value of 
a feature has been found, it is stored: further 
attempts to evaluate a given feature during a 
given search will retrieve this stored value. 

At the: end of the run, Arboretum will open a 
window on an explanation, in which it will print a 
letter to the claimant, explaining what the 
decision was and how it was reached; although 
the English tends to be somewhat stilted, we 
consider that it gives genuine and valuable 
informat ion in a form which both the user and the 
claimant can be expected to understand (and 
certainly more than claimants receive under the 
current manual system). 

2.5 Reading rules 
Let us summarise how to read a DTree rule 
structure. The basic units are nodes and the edges 
between them. An edge should always be read 
downwards and when connecting different 
colours as meaning ‘unless’. Thus the most basic 
structure is ‘hypothesis is false unless condition is 

Hypothetit - 

Condition + 

Figure 3. Simplest possible rule 

Widow - 
Husband‘s contributions OK - 

Under Pension Age Husband not entitled 
vhen bereaved + t o  Cat A R.P. + 

Figure 2. Rule for “Satisfies conditions for Widow’s Allowance” 

Conjunctions are represented by columns of 
nodes, only the last of which has the colour to be 
returned if all are true and disjunctions by 
branches, each of which terminates in the colour 
to be returned if any are true. These can be 
combined in any fashion desired, although we 
consider it good practice to keep individual rule 
structures small. This is shown in the figure 
below: 

Figure 4. Example rule, showing syntax 

The rule would read: ‘(rootnode) is false unless 
(first conjunct) is true and (second conjunct) is 
true, in which case it is true unless either (first 
disjunct) or (second disjunct) is true’. 

We are not wholly satisfied by our represen- 
tation of conjunction, because although logically 
correct, it upsets the conception of elicitation by 
exception: in conjunction columns, it is categori- 
cally not the case that each movement down the 
tree signifies a reversal of decision. From this 
point of view, the whole conjunction should label 
a single node. However, to represent it thus inter- 
feres with the full animation of the search, and 
this is very undesirable. We have considered 
several ways of representing conjunction on the 
display, but have yet to be fully satisfied with any 
of them. Perhaps the most promising is the idea 
of introducing a third ‘colour symbol’, as shown 
overleaf. The ‘&..’ logically simply repeats the 
colour of the preceding node, but it should be 
clearer to the user. 
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4th Conjunct + 

Figure 5 .  Suggested alternative representation of conjunctions 

2.6 Graphical rules: discussion 
In Arboretum, there is (as far as the user is con- 
cerned) no command line. All interaction with 
the machine -with the exception of the editing 
of explanation texts and typing in names of new 
features - is carried out with the aid of the 
mouse, manipulating graphs and selecting from 
menus. Thus the interactive manipulation of 
graphs is the only way of creating and editing 
rules, and the graphical display of the rule is the 
only form in which the rule is available to the 
user. 

We feel the graphical rule has two advantages: 
the syntactic structure of the rule is immediately 
apparent from its shape, and the inter- 
relationships between predicates are immediately 
evident. Like Guidon-Watch, the graphical tool 
is specialised and simplified from the very general 
utilities now provided by such Artificial Intelli- 
gence toolkits as Kee (for a description, see [8]) 
and Loops. Partly because we are using a very 
much simpler inference process than that which 
underlies Guidon- Watch, we are able to get away 
with only one display tool. 

However, this display tool actually shows the 
rules themselves in graphical form: Guidon’s 
rules cannot be displayed in this way. Instead, 
one may look at graphs which show which rules 
call which others (the ‘metarules window’), and 
at graphs which show which predicates relate to 
which others (the ‘taxonomy window’). The 
inference process is animated in this latter, with 
current hypotheses being highlighted by boxing. 
Thus the display in the taxonomy window is 
conceptually very similar to that in our DTree 
Display window. 

Again, the authors of Guidon appear to offer 
their taxonomy graph only as a single monolithic 
structure. This might at first appear to have the 
advantage that the whole graph is available at 
once: but in fact, unless the knowledge base is 
relatively trivial, it will not be possible to display 
the whole graph on the screen in any case. 

We believe that the ability to modularise tree 
structures is important. Large graphs, like large 
chunks of code, are indigestible. Obviously, the 
exhaustive conditions for any given benefit, like 

he exhaustive taxonomy of human disease, could 
Je displayed as a single structure: but we prefer to 
tpply something like a structured programming 
nethodology to knowledge-base building, hreak- 
ng monolithic structures up into smaller parts. 
However, it is important that inter-relationships 
3etween parts should remain clear. Con- 
sequently, in designing our display, we have 
taken care visually to relate displays of separate 
trees so that the user can see immediately, from 
the way trees are placed, what calls what. Thus, 
when we open a display on the DTree of the 
Feature behind a node, the new display is 
automatically positioned so that its upper left- 
hand corner overlays the node from which it  was 
zalled. 

2.7 Explanation 
The explanation facility is also important to the 
usefulness of the system: without it, we must 
effectively take the decisions of the machine on 
faith, and in a domain with imperfect information 
that is dangerous; furthermore, the machine is 
reduced to giving yeslno answers. We can ask “is 
this person entitled to benefit”, but not “which 
benefit is this person entitled to”. Of coursc, the 
system with explanation can still only give yes/no 
decisions, because that is the nature of the logic; 
but now it can say “yes, this person is entitled to 
benefit; and the benefit they are entitled to is 
mobility allowance”. 

In addition to this facility, however, the DTree 
system does provide the equivalent of the more 
traditional ‘ask how’ and ‘ask why’ queries pro- 
vided by other inference mechanisms. We can see 
why a question is being asked, simply by looking 
at the display and seeing that it is needed in the 
evaluation of the current rule, whose result is 
needed by the preceding rule, and so on back to 
the question originally asked. To ask how a 
particular value was found, after completion of a 
run, we can point to a node representing the 
feature in question and select ‘How?’ from the 
left button menu. The machine will respond by 
printing out a message saying whether the value 
was supplied by the user, evaluated from a 
DTree, or taken from a default. If a DTree was 
called, it will be displayed. 

2.8 Writing the explanation 
The explanation system depends on and exploits 
the fact that DTrees are structured through 
exceptions from the very general to the more 
abstruse and particular; and that, in conse- 
quence, any path through a rule structure follows 
a line of coherent argument, again from the 
general to the particular. Thus a sticking node on 
the DTree for a feature records both a decision 
and, by its position in the DTree, contains 
implicitly an explanation of why that decision was 
made. 

Consequently, we have attached to each node 
in the system a text fragment to explain the con- 
sequence for the feature whose rule the node is in, 
if that node is a sticking node. This explanation 
fragment is a piece of canned text, written by the 
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knowledge engineer. We acknowledge the 
criticism (made, for example, by Swartout [9]) 
that this approach “makes it difficult to maintain 
consistency between what the program does and 
what it claims to do” in that rules can be edited 
independently of the explanation fragments. But 
there is no reason why the system should not be 
modified to generate explanation fragments 
itself, for example by using a text macro similar 
to: “<feature of root-node> was found to be 
<colour of stick-node> because <feature of 
stick-node> was true”. Such a macro could then 
be expanded immediately after a rule was edited, 
to provide new explanations, guaranteed to be 
consistent with the current form of the rule, 
which could then be polished by the knowledge 
engineer. 

When writing fragments for the system as it 
exists, the knowledge engineer does not have to 
look beyond the DTree that is being edited. The 
task is simply to consider a node and attach text 
saying why the feature of the DTree obtains (or 
does not:) when that node is conceived as the only 
sticking node. The structure of the system itself 
then ensures that in the final text, the fragment 
will follow sensibly from the preceding one. The 
only exception that we have found to this occurs 
when the DTrees themselves are without 
explanatory content. For example, consider the 
DTree below: 

Able to  vslk - 

Figure 6 .  Rule for “Unable to walk” 

This says that a person is unable to walk unless 
they are able to walk. Logically impeccable 
though it is, it defies sensible explanation since it 
is empirically vacuous. With automatic text 
generation, the lower node would receive the 
fragment “You are not unable to walk because 
you are able to walk” while the upper would re- 
ceive “You are unable to walk because you are not 
able to walk”. This is either a logical truth (read 
‘because’ as ‘if) or a falsehood (read ‘because’ 
causally). Clearly it does not belong in an 
explanation of anything. In the system as it is, the 
knowledge engineer is able to work around this 
by attaching a null explanation to each node in 
such trees. 

I- 

I 2.9 Recovering the explanation 
We have discussed and experimented with 
several algorithms for the recovery of expla- 
nations. The one we currently use works as 
follows: when a search results in a ‘no’ decision 
(ineligihle for a benefit) then we concatenate the 
explanation fragments from the deepest sticking 
node in each successive tree on the search path. 

The reason is that this represents the ‘nearest’ 
that the claimant got to succeeding in the claim. 
This follows from the structure of the DTree, the 
deeper nodes represent more abstruse con- 
ditions: to reach them at all more general require- 
ments for eligibility must have been met. 

Furthermore, the information given in this 
explanation should be sufficient to assist in the 
preparation of an appeal, if the claimant feels 
there are further relevant facts which have not 
been considered - and this was, indeed, pre- 
cisely our intention. It is, we think, part of the 
notion of relevance that it is the ‘nearest miss’ that 
should be described in such cases. 

In the case of a ‘yes’ decision we choose the 
opposite approach and select the shallowest stick- 
ing node available. Partly because the claimant 
who succeeds is less concerned about why, but 
mostly because it is not relevant to describe how a 
long and tortuous inference path finally delivered 
‘yes’ when a much shorter less involved one did so 
too. Again this seems in accord with our ordinary 
ideas of relevance. 

It is, we think, interesting, that the structure of 
DTrees should so closely represent our natural 
ideas of relevance of explanation (at least within 
the present application domain). 

2.10 A worked example 
To provide a small worked example of an expla- 
nation generated by the system, which is yet large 
enough to give some flavour, let us assume a 
further rule to those given above: 

Figure 7 .  Rule for “Living with Partner” 

this, indeed, is necessary to complete the encod- 
ing of the legislation fragment given. Let us 
further assume we have entered at least the 
following explanation fragments, each providing 
an explanation simply in the context of the rule in 
which it appears: 

11 on the node for ‘Living with Partner’ 
in the rule for ‘Entitled to Widow’s 
Allowance’, the text: 

‘Although you satisfy the basic conditions 
for eligibility for Widow’s Allowance, you 
are not eligible, as we understand that you 
now have another partner.’ 

21 on the node for ‘Remarried’ in the rule 
for ‘Living with Partner’, the text: 

“We understand that you have re- 
married.” 

I 
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Of course, we would also enter text fragments 
for all the other nodes in our rules. Now assume 
we are dealing with the case of a widow whose 
previous husband had paid his National 
Insurance stamps as required, and who had not 
reached pensionable age at the time of his death. 
Assume further that, within the first six months 
of her bereavement, our claimant has remarried. 
The text that would be generated would be: 

Dear [name of claimant] 

Although you satisfy the basic conditions for 
eligibility for Widow’s Allowance, you are not 
eligible, as we understand that you now have 
another partner. We understand that you have 
remarried. 

Yours sincerely 

There is a number of points to notice. First, we 
could easily have written far more friendly and 
less formal fragments; for example, we could 
have written ‘we wish you all the best in your new 
marriage’. The formality here is simply to help in 
understanding the mechanical nature of the con- 
catenation process. 

Much more significantly, note that although 
the inference engine must have known or 
discovered, for example, that her previous 
husband had indeed been regular and conscien- 
tious about his national insurance contributions 
for it to have reached its conclusions, this infor- 
mation has been ‘included out’ of the expla- 
nation. It is irrelevant. It is clear that, if our 
claimant wished to make an appeal, her grounds 
for doing so would have to be that the information 
provided had been incorrect, and that she had 
not, in fact, remarried. 

2.1 1 Explanation: a discussion 
This ability to abstract relevant information from 
an inference engine’s backtrace represents a 
partial solution to a problem which has been 
recognised by many authors in the field [ 101 and 
[ 111. Early explanation systems such as Mycin 
[ 121 and Apes [13] generated explanations by list- 
ing each of the rules which had fired, with some 
degree of syntactic sugaring. This approach 
leads, as Jackson has written [lo], to explanations 
which are ‘extremely verbose and hard to follow, 
even in the traversal of a relatively shallow search 
space.’ 

Obviously, people have worked to improve on 
this, broadly by exploiting some meta- 
knowledge, either given as data at the knowledge 
engineering stage or dynamically generated at 
run time, which attempts to abstract out the 
relevant information. 

As examples, Clancey [ l l ]  suggests dis- 
tinguishing between ‘world fact rules’, which 
need no explanation; ‘domain fact rules’, which 
need only to be explained to non-experts; and 
‘causal rules’, which must always be explained. 
Emycin [14] had a mode where its explanation 
was drawn from only those rules which fired 
successfully. Xplain [9] used an answer generator 

vhich maintained a model of what “the user can 
)e presumed to know”, which, in addition to 
,omething analogous to Clancey’s distinction, 
:xploited knowledge of what it had already told 
he  user. 

These systems are all obliged to employ 
ievices, more or less complex, to extract a reason- 
tble explanation from an inference trace that is 
tself not structured to such purposes. On the 
:ontrary the knowledge base in DTrees is, as we 
lave argued, structured in such a way as to facili- 
ate the generation of explanations. This is a 
urther desirable consequence of the method of 
itructuring knowledge by exceptions. Of course, 
iothing in the above is intended to denigrate the 
ievices employed by other workers. DTree 
;tructure does not discriminate commonsense 
<nowledge, which although critical need not be 
zxplained. Clancey’s technique could be fruit - 
’illy included here. Nor is it capable, as was 
Swartout’s system, of avoiding repetition and 
tautology in the explanation text. 

Again, it does not address the problem of 
Zxplaining to the user why the machine followed a 
particular strategy (see [IS]): this is because, as in 
:most) other logic-based systems, the control 
strategy is fixed. 

Nevertheless, the system does, at the very 
[east, explore a presently under-used approach to 
the problem of explanation - namely to 
structure the knowledge so as to render the 
problem as near to trivial as possible. 

3. DTrees 
In this section we shall explain more systemati- 
cally the basic operation of the DTree system. 
Our objective is to provide enough detailed infor- 
mation for the reader to implement a DTree 
system. 

3 .  I Philosophy 
First a brief word on the philosophy of the 
system. The root idea is that a decision has always 
been made, there is always an answer available, 
but one which the system is currently trying to refute. 
The eventual decision is simply the last m e  made, 
the one that the system has failed to refute. At any 
point it tries to ‘change its mind’, and when it can 
no longer do so that is the decision it delivers. 
After all, if there is nothing as yet unexamined 
that could make you change your mind why 
deliberate further, while if there is how may you 
legitimately stop? This is, of course, why we aim 
to make the children of a node have opposite 
colour to the parent. The idea of an alternating 
‘yeslno’ with decision characterised simply by its 
position at the end is a very old one indeed due to 
Thomas Hobbes [16]. The emphasis on trying to 
refute rather than trying to confirm is of course 
Popperian (passim, but see for example [ 171). 

3.2 Algorithm and data structures 
A DTree system contains at any time a number of 
features, objects and nodes. In a Lisp implemen- 
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tation these are litatoms equipped with property 
lists. (In the Loops implementation the struc- 
tures are rather different but not in any way that 
affects the principles of the system). 

A ‘feature’ has the properties: 
(methods DTreeRootnode default activeFlg) 

where methods is the list of methods that the 
feature applies to see if it holds of the given 
object, DTreeRootnode holds a pointer to a 
DTree node if the feature is equipped with one 
(else NIL), default holds the default value of the 
feature, and activeFlg is simply a semaphore to 
prevent DTrees calling themselves. 

A word more about the methods property. 
This may in principle hold a list of any functions 
that are to be applied (in the order found) with 
standard arguments by the feature when it is 
called. A feature may thus be seen as a local 
‘expert’ whose task is to decide whether it holds 
of a given object by applying the list of methods it 
has been supplied with (this picture was 
suggested by Lenat [IS]). However, for the sake 
of simplicity, we shall henceforth assume that the 
methods property is just the list (DoTreeDefault), 
and describe the algorithms accordingly. 

A DTree for a feature feature is a list of nodes. 
A node has the properties: 

(feature, colour, children, parent) 

Feature points to a feature of the system, colour is 
either Yes or No, children point to successor 
nodes of the node (if any) and parent to the 
unique predecessor node (NIL for the origin of 
the DTree). 

An ‘object’ is just a litatom. The syster 
updates the property list of the object. 

We will describe algorithms in a generic Lisp 
but with concessions to readers not familiar wit1 
the language. Lisp readers should think of IF a 
being equivalent to COND, LOCAL to PROG 
and EMPTY? to NULL. RETURN has beel 
used occasionally unprotected by a PROG: ii 
such instances it should be thought of as simp1 
returning the value of its argument. The atom 
TRUE and ELSE should be thought of as beinl 
bound to T, and FALSE to NIL. 

We choose to present the algorithm iterativel: 
rather than recursively for expository clarity. 11 
order to make things clearer, we have adopted thc 
elegant LOOP construct from Acornsoft Lisl 
[ 191; this should be self explanatory, but briefl! 
the list of arguments is repeatedly evaluated unti 
the argument to an UNTIL clause evaluates tc 
anything other than NIL, when the LOOP i: 
exited immediately after that UNTIL clause 
SET has been used rather than SETQ as morc 
readable; and LISP: users will clearly see tha 
many of the SETS could be avoided. We hopc 
they will make things easier to understand. 

The top-level function call is (DecideFea 
feature object). This first looks on the propert! 
list of object. If it finds (feature . Yes) or (feature 
No) it returns Yes or No as the case may be 
Otherwise it calls the features’ DTree if there i: 
one (using DoTree) or if not, returns a defaul 
value (using Default). Default may be a compli 
cated function (indeed it may initiate a substan 
tial train of activity) but for present purposes i 
may be thought of as simply recovering ’Yes 01 
’NO from the default property of the feature. 

(DecideFeat (object feature) 
(IF ((GET object feature)) 

{if the value is known, that’s ok, do nothing} 
((GET feature ’DTreerootnode 

(PUT object feature (DoTree object feature)) 
{if a DTree exists, evaluate it - store the result on the object} 

{Default will always succeed returning the default value of the feature. Store it on 
the object} 

(ELSE (PUT object feature (Default feature] 

(RETURN (GET object feature))) 
{now the value must be on the feature property of object - so return that} 

DoTree is: 

(DoTree (object feature) 
(LOCAL (result) 

(IF ((GET feature ’activeFlg) (RETURN (GET feature ’default))) 

(ELSE (PUT feature ’activeFlg TRUE) 
{if the tree is already in use, don’t call it again to avoid looping} 

{mark the tree as in use} 

{search the tree} 

{reset the marker} 

(SET ’result (DSearch object feature)) 

(PUT feature ’activeFlg FALSE) 

(RETURN result] 
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The function of DoTree is just clerical, the 
uork is done by DSearch. This function induces 
I subtree of the DTree, the leaf nodes of which 
ire exactly those nodes from which no exit was 
3ossible. They represent the points at which the 

DSearch uses left to right depth first search, 
which corresponds well with the conceptual 
structure of the DTree, exploring each possibility 
exhaustively as it arises; but other traversals are 
not ruled out. 

This only leaves the function ‘Decide’. This 
simply scans the nodes submitted to it. If all of 
them have colour ‘No’ then Decide returns ‘No’, 
But if even one has colour ‘Yes’ then ‘Yes’ is 
returned instead. This represents the fact that 
our domain rules provide sufficient conditions 
for access to a benefit, If you qualify by any of the 
criteria then the overall decision is Yes. 

system can no longer ‘change its mind’. We call 
them stickNodes, and DSearch passes them to 
the function Decide. The algorithm for DSearch 
is: 

3.3 Logic: discussion 

DTrees is a non-monotonic system (see j203) ir 
that what follows on the basis of limited infor 
mation may no longer follow when more is given 
Non-monotonicity is a feature of all systems o 
default reasoning, or at least all reasonable ones 
For a default is only accessed in the absence o 
specific information and should that informatior 
be subsequently added the default will no longe 
be used (with consequential effects throughou 
the system). Predicate logic is not a non 
monotonic system, so that DTrees is not a subse 
of predicate logic. And this raises an importan 
question of semantics: informal understandin1 

114 Expert Systems, May 1987. Vol. 4, No. 2. 



I 

Figure 8. Rules ‘a’ and ‘b’ used in discussion 
of semantacs 

aside what is the meaning of a system of DTrees, 
in what sense is a DTree decision a correct one? 

3.4 A semantics for DTrees 
To answer this question we will do two things. 
First, given any rule (expressed as a bi-con- 
ditional) for deciding a sentence Pa we show how 
to construct an equivalent DTree representation. 
Secondly, given a DTree we shall show how to 
construct an equivalent sentential rule. To save 
clutter we will suppress reference to variables and 
the universal quantifier. Thus in what follows: 

VX (Px t, (-ax + Rx)) 

would be represented by: 

PH(Q v R)  

Suppose that the rule for a feature P i s  given by 
the bi-conditional (iff): 

( I )  P <-> A(Ql.-. Q,) 

where A represents a truth function of the 
features Qi. It is well known that every such truth 
function is equivalent to a disjunctive normal 
form; that is a disjunction D, v D2 v..... v D, 
where each Di is a conjunction of features or 
negated features. Suppose that Di is in fact 

DTree at (a) in the figure below is a DTree for the 
rule: 

Q1 & ... & Qk & -  Qk+l & ... & -Q,. The 

for each of the nodes of colour Yes in the given 
DTree. Prolog itself guarantees that the ‘if 
clauses together amount to ‘if and only if. The 
use of negation as failure corresponds to the 
simple default mechanism that we have de- 
scribed. The standard Prolog depth first left right 

Expert Systems, May 1987. Vol. 4, No. 2. 

One sees this by noting that the only way to 
obtain a stickNode of colour ‘Yes’ on this DTree 
is to make the right-hand side of 2) true. For you 
need to access Qk and then ‘stick’ there. 

Now construct such DTrees for each of the 
disjuncts Di and finally identify the origins of all 
of them. This is a DTree equivalent to the rule 
(l), for if (1) gives P true then the right side of (1) 
is true and so some disjunct as at (2) is true also. 
But then there is a stickNode with colour Yes. If 
(1) decides P false then the right side of (1) is false 
so none of the disjuncts as at (2) is true. But then 
there are no stickNodes with colour Yes on any of 
the subtrees. So the DTree too decides ‘No’. 
Thus we can build a DTree to represent any rule 
which is given as a truth function of features. 

Conversely, given a DTree one can construct a 
sentential representation of the rule it represents. 
The process is essentially the reverse of that just 
given. In a DTree D every node x determines a 
path back to the origin. Let x,,x l...x,,x be the 
path leading to x and yl.. .yk be the children of x 
(if such there be). Then the characteristic 
formula for the node x is: 

(3) T & P, & .. & P, & P & -Qk+. ,  & -. & Y Q , + ~  

where Pi, Qi are the features labelling the 
respective nodes, and T is a sentence always true 
(since the origin is always accessed). We hope it is 
clear that x is a stickNode in the DTree just in 
case the characteristic formula for x is true. Now 
form the disjunction V = C1 v...v C, of the 
characteristic formulas of all nodes with colour 
Yes on the DTree. If D is for a feature P then the 
formula P <-* V is seen to be a sentential rep- 
resentation of the DTree rule. As an example, the 
DTree in Figure b) above has the characteristic 
formula below: 

(T & R & S) v (T & U & T R )  

We are now in a position to answer precisely 
the question raised at the outset: ‘In what sense 
are DTree decisions correct?’ Since DTrees are 
equivalent to bi-conditionals, we can say that if 
the corresponding bi-conditional is true, and if 
the features assumed of the object are true, and if 
[finally) the default values accessed by the system 
are also allowed to be true, then the decision 
given by DTrees is true also. For it is a logical 
consequence of these. In short: assumptions plus 
used defaults plus DTree rules logically imply 
DTree decision. This can be shown rigorously 
but we shall not do so here. The important thing 
is to find the sentential analogues for graphical 
DTree structures so that we can sensibly speak of 
them entering into relations of logical implication 
at all, and this we have done. 

One final point. The characteristic formula of a 
DTree has a rather direct Prolog representation. 
In fact construct clauses: 
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search happens also to be the search regime cho- 
sen for DTrees. Thus DTrees, with its structure 
of exceptions could be used to help construct 
Horn Clause representations of legislation. 

4. Representing the law 
The claim has been made (primarily by Marek 
Sergot [21] and in several unpublished notes) that 
logic programming is ideally suited to the sort of 
applications we have just described. It is ofcourse 
not controversial that the language Prolog is 
suitable for such applications - indeed, Peter 
Hammond [22] has reported on the encoding of a 
part of the Social Security legislation in it. 
Sergot’s claim is rather that some, or even all, 
legislation can be usefully represented as a 
collection of Horn Clauses. This is a claim not 
about a programming language but about the 
law. 

We doubt that all legislation can be so rep- 
resented. Some writers (see [23]) will dispute that 
the law can be codified as a set of rules at all. Even 
on a more traditional view (see [24]) which 
accepts the rule paradigm, we can hardly move 
from this to allowing that the extremely simple 
Horn Clause provides an adequate form for the 
whole of the law. Be that as it may, it is the weaker 
claim that a lot of law can usefully be so rep- 
resented which is the one that matters here. That 
it can be so we do not wish to dispute (after all we 
saw in the last section how any DTree can be 
represented as a set of Horn Clauses). However, 
that a Horn Clause representation is a useful one 
seems to us more open to argument. 

It is our contention that such a representation 
is insufficiently scrutable. Despite the enthusi- 
asm of such as Kowalski [25] for Predicate Logic, 
one of the authors has been teaching it for some 
years and the plain fact is that as few people can 
manage logic as can manage mathematics (not, in 
fact, exactly the same few). 

Furthermore, the difficulty people experience 
with logic occurs when they are using it in a be- 
nign environment: the problems they are set are 
designed to be accessible. The legislative 
environment is far from friendly. Our colleague 
Mary Whittaker has recently been translating the 
rules and guidelines relating to student claims for 
benefit into a Horn Clause like format (but Lisp 
based). She reports numerous difficulties: repeti- 
tions of rules in slightly different forms, dis- 
crepancies and apparent contradictions (arising 
generally out of case law), general lack of clarity, 
and the use both of identical forms of words to 
mean different things and different forms of 
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