
A graphical

Abstract: This paper describes an inference system which lends itselfto graphical
representation. An implementation of the system is described, and its application in a
legislation based domain is illustrated. The methodology fm knowledge elicitation
which the system is intended to support is briefly indicated. The algorithm is
described, and semantics for the system are given.

PETER
MOTT
SIMON
BROOKE
Department of Systems
University of Lancaster
Gillow House
Lancaster
LA1 4YX
England

Introduction
he paper is divided into four sections.
In the first section, we describe the

1
raised by

background to our work: the domain in
which our inference engine was
intended to function, and the issuer
the special problems of that domain. In

the second section, we describe in general terms
the prototype inference engine we designed tc
meet these problems, concentrating particularlj
on the graphical rule interface, and the ex.
planation generator. We have concentrated the
technical material in the third section, where we
present the algorithm for the inference process,
and a semantics for the logic used. In the final
section we discuss issues relating to the represen-
tation of legislation.

1. Background
The Department of Health and Social Security
(DHSS) is charged, among other things, with
administering the range of welfare benefits estab-
lished by legislation and with advising Ministers
on possible changes and additions thereto. The
Alvey-DHSS Large Demonstrator project aims
to explore the potential of Intelligent Knowledge
Based Systems for assisting the Department in
these tasks. In the present paper we focus on just
one area of potential support: the process of
adjudicating benefit claims as carried out in Local
Offices of the DHSS by Adjudication Officers.

We describe in detail a system (which we call
DTrees) that implements a novel way of struc-
turing legal rules. Instead of a simple
IF. .THEN.. . structuring of rules this system
employs an IF..THEN..UNLESS.. format. In-
deed, the ‘unless’ begins to predominate until we
see the structure in a system of legal rules as
exactly a structure of common cases and excep-
tions proceeding through several levels from the
ordinary to the recondite.

The ideas presented here were developed
within the Large Demonstrator project as one of
several concurrent avenues of investigation into
possible support for Adjudication Officers within
the DHSS. It is not possible within the scope of
this paper to discuss in any great detail the
operation of the Local Office system of the
DHSS. However, some discussion is necessary

both to describe the problems to whlch the
DTree system offers (at least partial) solutions
and to forestall any impression that we claim
more for the system than we actually do.

Basically, the context in which Local Office
decision making occurs is one which involves the
application of a large and interrelated body of
rules of varying complexity and difficulty and,
indeed, accessibility. Moreover, the Local Office
staff who must determine the effect of these rules,
themselves occupy widely varying roles and
exhibit considerably different degrees of ex-
pertise. As a result the Local Office context is one
in which both the rules which have to be applied
and the roles of those who have to apply them can
be ambiguous and even contradictory. Addition-
ally, information coming into the system from
claimants is often diverse both in structure and
type. Therefore any interaction between client
and Local Office will involve problems of defini-
tion and explanation. The matching of relevant
rules to particular cases is by no means as simple
as the codified nature of the rules might suggest
PI.

We are aware of these difficulties and do not
suggest that the present system removes them.
Furthermore, any final system of support would
have to include components hardly resembling a
rule driven system at all. Indeed possibilities for
such support are being actively considered in the
Project, for example [2], but we shall not consider
them further here. On the other hand it does not
do to overstate them. We think that a large pro-
portion of cases are straightforward enough or,
even if this be disputed, a large proportion will be
treated as straightforward. That is inevitable
given the volume of cases and the time and staff
available to decide them. There is thus a place for
a rule driven system to render as speedy and
efficient as possible the bulk of routine cases and
thereby free time for the consideration of difficult
ones.

Adjudication Officers must decide claimants’
eligibility over a wide range of welfare benefits.
They do not work as such all the time. In fact only
about 20% of their working day is spent in adjudi-
cation. Furthermore, there is a very large
volume of work to be done, so they work under
considerable pressure.

The Adjudication Process is independent of
the Secretary of State and has its own levels of
authority culminating in the Chief Adjudication
Officer. He is supported by the Office of the
Chief Adjudication Officer (O.C.A.O.) which
has a general supervisory role over the adjudi-
cation process. It monitors the quality of the
decision making of the Adjudication Officers,
issues written guidelines to assist Adjudication
Officers in their decision making, and distributes
information about changes in the bmefit rules,
This last point needs emphasis.

The rules concerning welfare benefits are fre-
quently modified, both to correct local anomalies
and of course to reflect more substantial political
changes in the provision of welfare. A static
support system then, constructed at considerable
expense around a fured set of rules, cannot be use-

106 Expert Systems, May 1987. Vol. 4, No. 2.

I
ful because it will become outdated almost
immediately. What is required is a system that
can be modified and updated easily by the offi-
cials in the O.C.A.O.

The general context is then of a (very) large
organisation in which relatively numerous junior
officials apply extensive and frequently changed
legislation in limited time under the supervision
of relatively few senior officials. Fairly obviously,
the task of an IKBS support system is to maintain
and if possible improve the decision making
quality of the former and render more effective
the supervision exercised by the latter. The
present system is designed to contribute a
component to that goal.

We have aimed to design a system which would
access the legislative rule base (however extensive
it may be), which would propose a decision for
the case in question and then draft a letter
explaining to the claimant that decision. If the
case was straightforward the Adjudication
Officer would accept the suggestion offered by
the machine. Otherwise s/he can study a graphi-
cally presented trace of the machine’s inference
processes to assist M h e r in formulating an al-
ternative decision. Traces are notoriously un-
readable, but the graphic technique described
below renders them, we believe, scrutable and
hence useful.

Such a system would relieve Adjudication
Officers from the drudgery of hand drafting
standard form letters for straightforward cases.
Instead the system would do this - using indeed
more extensive and informative letters (originally
prepared in O.C.A.O.) than is possible given the
need to hand draft. The advantages for the
claimant are: a better explanation of hidher case
and security against ‘careless mistakes’; for the
O.C.A.O. they are the ability to change and
update the system far more quickly, for the
Adjudication Officer freedom from drudgery and
the time to exercise judgment on the more
problematic cases.

I 2. Using the system
The object of this section is to provide the reader
with an informal introduction to the logic of the
DTree system, and to the ideas behind it, by
describing the construction and use of a small
knowledge base. We will briefly describe an
experimental implementation in order to make
the ideas clear. The more technical aspects will be
covered in the next section.

I 2.1 Arboretum

are produced is shown as an animated graph. Thc
user can ask the system how the value of an:
particular feature was arrived at, and what tha
value was.

One of the most significant advantages W I
would claim for the system is that it is extremel:
simple for relatively naive users to builc
knowledge bases. Knowledge engineering wit1
this system requires no understanding of com
puter language, no very abstruse knowledgc
about the machine, no complex calculation o
weightings and probabilities. The logic i:
designed to facilitate a methodology which W I
call ‘elicitation by exception’.

2.2 Elicitation by exception
The knowledge engineer’s task, using thir
methodology to build a rule, is simply to ask: is :
given predicate normally true? If it were true
would it normally be a sufficient condition? Anc
having got this far, is there anything at all whicl
would overturn the decision? If nothing could
the process terminates; but if there is some mort
abstruse factor which could still cause a change o
mind, then that is added as a new condition anc
once more one asks if there is anything furthei
that could cause a change of mind. Thus wt
proceed down a conceptual tree where at eack
level the decision just made is reversed.

Intuitively the deeper the level, the mort
unlikely the situations that occupy that level. It it
our suggestion that the structure of exception?
that can explicitly be recovered by the knowledgc
engineer in this way is what is implicitly anc
imperfectly represented by the certainty factor:
in classical expert systems.

We believe that the use of a graphical interface
also contributes greatly to simplicity of use. It is
interesting to note that this approach ha:
similarities to that followed by Richer and
Clancey in Guidon-Watch [5] . These similarities
will be discussed later, for the moment we jusl
observe that both these graphical interfaces
exploit the facilities provided by InterLisp-D on
the 1100 series machines, which include a large
bit-mapped display, software support foi
window/icon/mouse user interfaces, and sophis-
ticated tools for building graphs which can be
manipulated by the user.

To illustrate the use of the system, let us
assume that, as an officer in O.C.A.O., we
want to build a rule for ‘Entitled to Widow’s
Allowance’. We will encode from the Social
Security Act 1975 161, chapter 14, section 24, as
amended by the Social Security (Miscellaneous
Provisions) Act 1977, chapter 5, section 22(2).
This reads:

24.-(1) A woman who has been widowed
shall be entitled to widow’s allowance at the
weekly rate specified in relation thereto in
Schedule 4, Part I, paragraph 5 , i f

(a) she was under pensionable age at the
time when her late husband died, or he was
then not entitled to a Category A retirement
pension (section 28); and

(b) her late husband satisfied the con-
tribution requirement for a widow’s

The implementation, called ‘Arboretum’, which
was written in InterLisp-D [3] using Loops 141
object oriented facilities, is designed to allow
people to manipulate DTree structures through
graphical representations: to build arbitrarily
large knowledge bases, to use these to provide
answers to questions about objects in domains
admitting incomplete information - and to
provide natural language explanations of these
answers.. The inference process by which answers

Expert Systems, May 1987. Vol. 4, No. 2. 107

108

allowance specified in Schedule 3, Part 1,
paragraph 4.
(2) The period for which widow’s allowance
shall be payable shall be the 26 weeks next
following the husband’s death:

Provided that the allowance shall not be
payable for any period after the widow’s
death or remarriage or for any period
during which she and a man to whom she is
not married are living together as man and
wife.
In addition to the legislation itself, the officer

would be required to take into account the case
law, and previous decisions by the Social Security
Commissioners. An example here would be the
iecision R(G) 2/79 171, which precludes a
:laimant from receipt of benefit where the entitle-
ment, based on her status as a widow, is the direct
result of an unlawful act of murder or man-
slaughter even though all the statutory require-
ments may be satisfied and benefit would other-
wise be paid.

It is clear that the above fragment - in
:ommon with much legislation - involves a
structure of exceptions. We can see immediately
that a possible structuring takes the form: entitle-
ment false, unless entitling conditions satisfied,
in which case true, unless overriding consider-
ation, in which case false. We can represent this
in a DTree.

2.3 Building the rule
The first action is to bring up a display for the
feature ‘Entitled to Widow’s Allowance’. We do
this by selecting it from the ‘Open Display’
menu, or, if it does not already exist, by selecting
‘New Feature’. Then we must introduce the
feature. As no rule yet exists, the display will
show just one (root) node.

To extend it, we point to the root node and
select ‘Add Node’. We again select ‘New Feature’
from the features menu that appears, and use the
feature inspector which then opens to set up the
properties of the next feature, such as its name
(‘Satisfies conditions for Widow’s Allowance’),
whether it is normally true in the world and
whether it is something the user can reasonably
be asked about. This process is repeated for
further nodes to achieve a rule like this:

Before going any further, it will be useful to
discuss the difference between a ‘feature’ and a
‘node’. A ‘feature’ is a predicate known to the
system; it is something which may be true of an
object in the domain. For instance, in the Adjudi-
cation Officer’s domain, ‘widow’ is something
that can be true of a person. Each feature occurs
just once in the system: it is global. As a funda-
mental building block, it may have properties:
the most important of these is that it may have a
rule structure, a ‘DTree’, which may be
evaluated in order to establish its value. Another
significant property, which all features must
have, is a ‘default value’: the feature must know
whether it is usually true, or false, in the domain.

But within a particular DTree we need to be
able to refer to various features, which we do
using ‘nodes’. Nodes are nothing more than
components of DTree structures. Each node
carries local information, the most important
items being the feature which it references, and
its ‘colour’, which is the advice the node gives to
the top node of the rule to which it belongs.

Colour is represented by the arithmetic symbol
following the name of the feature in the display.
As the basic connective of the system - rep-
resented by an edge between nodes - is an unless
clause, the system by default alternates ‘ t- ’ (yes)
and ‘-’ (no) nodes. Since most features are
usually not present we begin with a ‘minus sign’
(default values can be changed by pointing to the
node and selecting ‘Change Colour’). So the basic
way to read a DTree rule for a feature is ‘feature
not present(minus sign), unless.. . , .(+) unless
(minus sign).’ to whatever depth you please.

So we can read the rule given as ‘Entitled to
Widow’s Allowance is false unless Satisfies
conditions for Widow’s Allowance is true, in
which case Entitled to Widow’s Allowance is true
unless any of (the overriding considerations) are
true’.

Now we must encode a rule for ‘Satisfies
conditions.. .’. We will subsume ‘woman’ undei
‘widow’ at this stage, later writing a rule to define
‘widow’ as a woman whose husband has died
during their marriage. Examination of the Acl
shows that a possible encoding would see the con-
junction of widowhood and husband’s contri ’
bution record as being the primary condition.
with other considerations being secondary: othei
encodings are of course possible, but this on€

Figure 1. Rule for “Entitled to Widow’s Allowance”

Expert Systems, May 1987. Vol. 4, No. 2.

tends to preserve the intuitive idea of putting the
most probable conditions highest in the tree, and
:incidentally) tends to promote efficiency of
:xecution. Thus we would have a rule as
indicated in Figure 2.

2.4 Evaluating the rule
Having built a rule, we need to be able to apply it
to a case. Before this could be done seriously,
explanation fragments would have to be added to
the nodes. The details of this will be described
later. For now, assume that it has been done, and
imagine that we want to know of some particular
claimant , whether they are entitled to widow’s
allowance. Point to a node for ‘Entitled to
Widow’?; Allowance’ and select ‘Run Feature’.

The inference engine will now evaluate the
rule, calling other rules as needed to determine
particular values, and report whether the
Aaimant is entitled to the benefit. It will do so by
searching the rule structures passing through
snly those nodes whose features evaluate to true;
2s it searches, it will emphasize, on the display,
the edge: along which it is searching. As each
feature is first encountered, if the ‘ask user?’ flag
3f the feature is ‘yes’, it will ask the user for the
value for the feature, it will check whether the
feature owns a rule structure, and it if does, will
:valuate that. As each new rule is called, it will be
displayed, attached to the previous display so that
it overlays the node from which it was called. If
no rule exists, or if (as should not happen) the rule
is actually in use further up the recursion stack,
the default value will be taken. When the value of
a feature has been found, it is stored: further
attempts to evaluate a given feature during a
given search will retrieve this stored value.

At the: end of the run, Arboretum will open a
window on an explanation, in which it will print a
letter to the claimant, explaining what the
decision was and how it was reached; although
the English tends to be somewhat stilted, we
consider that it gives genuine and valuable
informat ion in a form which both the user and the
claimant can be expected to understand (and
certainly more than claimants receive under the
current manual system).

2.5 Reading rules
Let us summarise how to read a DTree rule
structure. The basic units are nodes and the edges
between them. An edge should always be read
downwards and when connecting different
colours as meaning ‘unless’. Thus the most basic
structure is ‘hypothesis is false unless condition is

Hypothetit -

Condition +

Figure 3. Simplest possible rule

Widow -
Husband‘s contributions OK -

Under Pension Age Husband not entitled
vhen bereaved + t o Cat A R.P. +

Figure 2. Rule for “Satisfies conditions for Widow’s Allowance”

Conjunctions are represented by columns of
nodes, only the last of which has the colour to be
returned if all are true and disjunctions by
branches, each of which terminates in the colour
to be returned if any are true. These can be
combined in any fashion desired, although we
consider it good practice to keep individual rule
structures small. This is shown in the figure
below:

Figure 4. Example rule, showing syntax

The rule would read: ‘(rootnode) is false unless
(first conjunct) is true and (second conjunct) is
true, in which case it is true unless either (first
disjunct) or (second disjunct) is true’.

We are not wholly satisfied by our represen-
tation of conjunction, because although logically
correct, it upsets the conception of elicitation by
exception: in conjunction columns, it is categori-
cally not the case that each movement down the
tree signifies a reversal of decision. From this
point of view, the whole conjunction should label
a single node. However, to represent it thus inter-
feres with the full animation of the search, and
this is very undesirable. We have considered
several ways of representing conjunction on the
display, but have yet to be fully satisfied with any
of them. Perhaps the most promising is the idea
of introducing a third ‘colour symbol’, as shown
overleaf. The ‘&..’ logically simply repeats the
colour of the preceding node, but it should be
clearer to the user.

Expert Systems, May 1987. Vol. 4, No. 2. 109

I

4th Conjunct +

Figure 5 . Suggested alternative representation of conjunctions

2.6 Graphical rules: discussion
In Arboretum, there is (as far as the user is con-
cerned) no command line. All interaction with
the machine -with the exception of the editing
of explanation texts and typing in names of new
features - is carried out with the aid of the
mouse, manipulating graphs and selecting from
menus. Thus the interactive manipulation of
graphs is the only way of creating and editing
rules, and the graphical display of the rule is the
only form in which the rule is available to the
user.

We feel the graphical rule has two advantages:
the syntactic structure of the rule is immediately
apparent from its shape, and the inter-
relationships between predicates are immediately
evident. Like Guidon-Watch, the graphical tool
is specialised and simplified from the very general
utilities now provided by such Artificial Intelli-
gence toolkits as Kee (for a description, see [8])
and Loops. Partly because we are using a very
much simpler inference process than that which
underlies Guidon- Watch, we are able to get away
with only one display tool.

However, this display tool actually shows the
rules themselves in graphical form: Guidon’s
rules cannot be displayed in this way. Instead,
one may look at graphs which show which rules
call which others (the ‘metarules window’), and
at graphs which show which predicates relate to
which others (the ‘taxonomy window’). The
inference process is animated in this latter, with
current hypotheses being highlighted by boxing.
Thus the display in the taxonomy window is
conceptually very similar to that in our DTree
Display window.

Again, the authors of Guidon appear to offer
their taxonomy graph only as a single monolithic
structure. This might at first appear to have the
advantage that the whole graph is available at
once: but in fact, unless the knowledge base is
relatively trivial, it will not be possible to display
the whole graph on the screen in any case.

We believe that the ability to modularise tree
structures is important. Large graphs, like large
chunks of code, are indigestible. Obviously, the
exhaustive conditions for any given benefit, like

he exhaustive taxonomy of human disease, could
Je displayed as a single structure: but we prefer to
tpply something like a structured programming
nethodology to knowledge-base building, hreak-
ng monolithic structures up into smaller parts.
However, it is important that inter-relationships
3etween parts should remain clear. Con-
sequently, in designing our display, we have
taken care visually to relate displays of separate
trees so that the user can see immediately, from
the way trees are placed, what calls what. Thus,
when we open a display on the DTree of the
Feature behind a node, the new display is
automatically positioned so that its upper left-
hand corner overlays the node from which it was
zalled.

2.7 Explanation
The explanation facility is also important to the
usefulness of the system: without it, we must
effectively take the decisions of the machine on
faith, and in a domain with imperfect information
that is dangerous; furthermore, the machine is
reduced to giving yeslno answers. We can ask “is
this person entitled to benefit”, but not “which
benefit is this person entitled to”. Of coursc, the
system with explanation can still only give yes/no
decisions, because that is the nature of the logic;
but now it can say “yes, this person is entitled to
benefit; and the benefit they are entitled to is
mobility allowance”.

In addition to this facility, however, the DTree
system does provide the equivalent of the more
traditional ‘ask how’ and ‘ask why’ queries pro-
vided by other inference mechanisms. We can see
why a question is being asked, simply by looking
at the display and seeing that it is needed in the
evaluation of the current rule, whose result is
needed by the preceding rule, and so on back to
the question originally asked. To ask how a
particular value was found, after completion of a
run, we can point to a node representing the
feature in question and select ‘How?’ from the
left button menu. The machine will respond by
printing out a message saying whether the value
was supplied by the user, evaluated from a
DTree, or taken from a default. If a DTree was
called, it will be displayed.

2.8 Writing the explanation
The explanation system depends on and exploits
the fact that DTrees are structured through
exceptions from the very general to the more
abstruse and particular; and that, in conse-
quence, any path through a rule structure follows
a line of coherent argument, again from the
general to the particular. Thus a sticking node on
the DTree for a feature records both a decision
and, by its position in the DTree, contains
implicitly an explanation of why that decision was
made.

Consequently, we have attached to each node
in the system a text fragment to explain the con-
sequence for the feature whose rule the node is in,
if that node is a sticking node. This explanation
fragment is a piece of canned text, written by the

I10 Expert Systems, May 1987. Vol. 4, No. 2.

knowledge engineer. We acknowledge the
criticism (made, for example, by Swartout [9])
that this approach “makes it difficult to maintain
consistency between what the program does and
what it claims to do” in that rules can be edited
independently of the explanation fragments. But
there is no reason why the system should not be
modified to generate explanation fragments
itself, for example by using a text macro similar
to: “<feature of root-node> was found to be
<colour of stick-node> because <feature of
stick-node> was true”. Such a macro could then
be expanded immediately after a rule was edited,
to provide new explanations, guaranteed to be
consistent with the current form of the rule,
which could then be polished by the knowledge
engineer.

When writing fragments for the system as it
exists, the knowledge engineer does not have to
look beyond the DTree that is being edited. The
task is simply to consider a node and attach text
saying why the feature of the DTree obtains (or
does not:) when that node is conceived as the only
sticking node. The structure of the system itself
then ensures that in the final text, the fragment
will follow sensibly from the preceding one. The
only exception that we have found to this occurs
when the DTrees themselves are without
explanatory content. For example, consider the
DTree below:

Able to vslk -

Figure 6 . Rule for “Unable to walk”

This says that a person is unable to walk unless
they are able to walk. Logically impeccable
though it is, it defies sensible explanation since it
is empirically vacuous. With automatic text
generation, the lower node would receive the
fragment “You are not unable to walk because
you are able to walk” while the upper would re-
ceive “You are unable to walk because you are not
able to walk”. This is either a logical truth (read
‘because’ as ‘if) or a falsehood (read ‘because’
causally). Clearly it does not belong in an
explanation of anything. In the system as it is, the
knowledge engineer is able to work around this
by attaching a null explanation to each node in
such trees.

I-

I 2.9 Recovering the explanation
We have discussed and experimented with
several algorithms for the recovery of expla-
nations. The one we currently use works as
follows: when a search results in a ‘no’ decision
(ineligihle for a benefit) then we concatenate the
explanation fragments from the deepest sticking
node in each successive tree on the search path.

The reason is that this represents the ‘nearest’
that the claimant got to succeeding in the claim.
This follows from the structure of the DTree, the
deeper nodes represent more abstruse con-
ditions: to reach them at all more general require-
ments for eligibility must have been met.

Furthermore, the information given in this
explanation should be sufficient to assist in the
preparation of an appeal, if the claimant feels
there are further relevant facts which have not
been considered - and this was, indeed, pre-
cisely our intention. It is, we think, part of the
notion of relevance that it is the ‘nearest miss’ that
should be described in such cases.

In the case of a ‘yes’ decision we choose the
opposite approach and select the shallowest stick-
ing node available. Partly because the claimant
who succeeds is less concerned about why, but
mostly because it is not relevant to describe how a
long and tortuous inference path finally delivered
‘yes’ when a much shorter less involved one did so
too. Again this seems in accord with our ordinary
ideas of relevance.

It is, we think, interesting, that the structure of
DTrees should so closely represent our natural
ideas of relevance of explanation (at least within
the present application domain).

2.10 A worked example
To provide a small worked example of an expla-
nation generated by the system, which is yet large
enough to give some flavour, let us assume a
further rule to those given above:

Figure 7 . Rule for “Living with Partner”

this, indeed, is necessary to complete the encod-
ing of the legislation fragment given. Let us
further assume we have entered at least the
following explanation fragments, each providing
an explanation simply in the context of the rule in
which it appears:

11 on the node for ‘Living with Partner’
in the rule for ‘Entitled to Widow’s
Allowance’, the text:

‘Although you satisfy the basic conditions
for eligibility for Widow’s Allowance, you
are not eligible, as we understand that you
now have another partner.’

21 on the node for ‘Remarried’ in the rule
for ‘Living with Partner’, the text:

“We understand that you have re-
married.”

I
Expert Systems, May 1987. Vol. 4, No. 2. 111

Of course, we would also enter text fragments
for all the other nodes in our rules. Now assume
we are dealing with the case of a widow whose
previous husband had paid his National
Insurance stamps as required, and who had not
reached pensionable age at the time of his death.
Assume further that, within the first six months
of her bereavement, our claimant has remarried.
The text that would be generated would be:

Dear [name of claimant]

Although you satisfy the basic conditions for
eligibility for Widow’s Allowance, you are not
eligible, as we understand that you now have
another partner. We understand that you have
remarried.

Yours sincerely

There is a number of points to notice. First, we
could easily have written far more friendly and
less formal fragments; for example, we could
have written ‘we wish you all the best in your new
marriage’. The formality here is simply to help in
understanding the mechanical nature of the con-
catenation process.

Much more significantly, note that although
the inference engine must have known or
discovered, for example, that her previous
husband had indeed been regular and conscien-
tious about his national insurance contributions
for it to have reached its conclusions, this infor-
mation has been ‘included out’ of the expla-
nation. It is irrelevant. It is clear that, if our
claimant wished to make an appeal, her grounds
for doing so would have to be that the information
provided had been incorrect, and that she had
not, in fact, remarried.

2.1 1 Explanation: a discussion
This ability to abstract relevant information from
an inference engine’s backtrace represents a
partial solution to a problem which has been
recognised by many authors in the field [101 and
[111. Early explanation systems such as Mycin
[121 and Apes [13] generated explanations by list-
ing each of the rules which had fired, with some
degree of syntactic sugaring. This approach
leads, as Jackson has written [lo], to explanations
which are ‘extremely verbose and hard to follow,
even in the traversal of a relatively shallow search
space.’

Obviously, people have worked to improve on
this, broadly by exploiting some meta-
knowledge, either given as data at the knowledge
engineering stage or dynamically generated at
run time, which attempts to abstract out the
relevant information.

As examples, Clancey [l l] suggests dis-
tinguishing between ‘world fact rules’, which
need no explanation; ‘domain fact rules’, which
need only to be explained to non-experts; and
‘causal rules’, which must always be explained.
Emycin [14] had a mode where its explanation
was drawn from only those rules which fired
successfully. Xplain [9] used an answer generator

vhich maintained a model of what “the user can
)e presumed to know”, which, in addition to
,omething analogous to Clancey’s distinction,
:xploited knowledge of what it had already told
he user.

These systems are all obliged to employ
ievices, more or less complex, to extract a reason-
tble explanation from an inference trace that is
tself not structured to such purposes. On the
:ontrary the knowledge base in DTrees is, as we
lave argued, structured in such a way as to facili-
ate the generation of explanations. This is a
urther desirable consequence of the method of
itructuring knowledge by exceptions. Of course,
iothing in the above is intended to denigrate the
ievices employed by other workers. DTree
;tructure does not discriminate commonsense
<nowledge, which although critical need not be
zxplained. Clancey’s technique could be fruit -
’illy included here. Nor is it capable, as was
Swartout’s system, of avoiding repetition and
tautology in the explanation text.

Again, it does not address the problem of
Zxplaining to the user why the machine followed a
particular strategy (see [IS]): this is because, as in
:most) other logic-based systems, the control
strategy is fixed.

Nevertheless, the system does, at the very
[east, explore a presently under-used approach to
the problem of explanation - namely to
structure the knowledge so as to render the
problem as near to trivial as possible.

3. DTrees
In this section we shall explain more systemati-
cally the basic operation of the DTree system.
Our objective is to provide enough detailed infor-
mation for the reader to implement a DTree
system.

3 . I Philosophy
First a brief word on the philosophy of the
system. The root idea is that a decision has always
been made, there is always an answer available,
but one which the system is currently trying to refute.
The eventual decision is simply the last m e made,
the one that the system has failed to refute. At any
point it tries to ‘change its mind’, and when it can
no longer do so that is the decision it delivers.
After all, if there is nothing as yet unexamined
that could make you change your mind why
deliberate further, while if there is how may you
legitimately stop? This is, of course, why we aim
to make the children of a node have opposite
colour to the parent. The idea of an alternating
‘yeslno’ with decision characterised simply by its
position at the end is a very old one indeed due to
Thomas Hobbes [16]. The emphasis on trying to
refute rather than trying to confirm is of course
Popperian (passim, but see for example [171).

3.2 Algorithm and data structures
A DTree system contains at any time a number of
features, objects and nodes. In a Lisp implemen-

112
~ ~~

Expert Systems, May 1987. Vol. 4, No. 2.

- I
tation these are litatoms equipped with property
lists. (In the Loops implementation the struc-
tures are rather different but not in any way that
affects the principles of the system).

A ‘feature’ has the properties:
(methods DTreeRootnode default activeFlg)

where methods is the list of methods that the
feature applies to see if it holds of the given
object, DTreeRootnode holds a pointer to a
DTree node if the feature is equipped with one
(else NIL), default holds the default value of the
feature, and activeFlg is simply a semaphore to
prevent DTrees calling themselves.

A word more about the methods property.
This may in principle hold a list of any functions
that are to be applied (in the order found) with
standard arguments by the feature when it is
called. A feature may thus be seen as a local
‘expert’ whose task is to decide whether it holds
of a given object by applying the list of methods it
has been supplied with (this picture was
suggested by Lenat [IS]). However, for the sake
of simplicity, we shall henceforth assume that the
methods property is just the list (DoTreeDefault),
and describe the algorithms accordingly.

A DTree for a feature feature is a list of nodes.
A node has the properties:

(feature, colour, children, parent)

Feature points to a feature of the system, colour is
either Yes or No, children point to successor
nodes of the node (if any) and parent to the
unique predecessor node (NIL for the origin of
the DTree).

An ‘object’ is just a litatom. The syster
updates the property list of the object.

We will describe algorithms in a generic Lisp
but with concessions to readers not familiar wit1
the language. Lisp readers should think of IF a
being equivalent to COND, LOCAL to PROG
and EMPTY? to NULL. RETURN has beel
used occasionally unprotected by a PROG: ii
such instances it should be thought of as simp1
returning the value of its argument. The atom
TRUE and ELSE should be thought of as beinl
bound to T, and FALSE to NIL.

We choose to present the algorithm iterativel:
rather than recursively for expository clarity. 11
order to make things clearer, we have adopted thc
elegant LOOP construct from Acornsoft Lisl
[191; this should be self explanatory, but briefl!
the list of arguments is repeatedly evaluated unti
the argument to an UNTIL clause evaluates tc
anything other than NIL, when the LOOP i:
exited immediately after that UNTIL clause
SET has been used rather than SETQ as morc
readable; and LISP: users will clearly see tha
many of the SETS could be avoided. We hopc
they will make things easier to understand.

The top-level function call is (DecideFea
feature object). This first looks on the propert!
list of object. If it finds (feature . Yes) or (feature
No) it returns Yes or No as the case may be
Otherwise it calls the features’ DTree if there i:
one (using DoTree) or if not, returns a defaul
value (using Default). Default may be a compli
cated function (indeed it may initiate a substan
tial train of activity) but for present purposes i
may be thought of as simply recovering ’Yes 01
’NO from the default property of the feature.

(DecideFeat (object feature)
(IF ((GET object feature))

{if the value is known, that’s ok, do nothing}
((GET feature ’DTreerootnode

(PUT object feature (DoTree object feature))
{if a DTree exists, evaluate it - store the result on the object}

{Default will always succeed returning the default value of the feature. Store it on
the object}

(ELSE (PUT object feature (Default feature]

(RETURN (GET object feature)))
{now the value must be on the feature property of object - so return that}

DoTree is:

(DoTree (object feature)
(LOCAL (result)

(IF ((GET feature ’activeFlg) (RETURN (GET feature ’default)))

(ELSE (PUT feature ’activeFlg TRUE)
{if the tree is already in use, don’t call it again to avoid looping}

{mark the tree as in use}

{search the tree}

{reset the marker}

(SET ’result (DSearch object feature))

(PUT feature ’activeFlg FALSE)

(RETURN result]

Expert Systems, May 1987. Vol. 4, No. 2. 113

The function of DoTree is just clerical, the
uork is done by DSearch. This function induces
I subtree of the DTree, the leaf nodes of which
ire exactly those nodes from which no exit was
3ossible. They represent the points at which the

DSearch uses left to right depth first search,
which corresponds well with the conceptual
structure of the DTree, exploring each possibility
exhaustively as it arises; but other traversals are
not ruled out.

This only leaves the function ‘Decide’. This
simply scans the nodes submitted to it. If all of
them have colour ‘No’ then Decide returns ‘No’,
But if even one has colour ‘Yes’ then ‘Yes’ is
returned instead. This represents the fact that
our domain rules provide sufficient conditions
for access to a benefit, If you qualify by any of the
criteria then the overall decision is Yes.

system can no longer ‘change its mind’. We call
them stickNodes, and DSearch passes them to
the function Decide. The algorithm for DSearch
is:

3.3 Logic: discussion

DTrees is a non-monotonic system (see j203) ir
that what follows on the basis of limited infor
mation may no longer follow when more is given
Non-monotonicity is a feature of all systems o
default reasoning, or at least all reasonable ones
For a default is only accessed in the absence o
specific information and should that informatior
be subsequently added the default will no longe
be used (with consequential effects throughou
the system). Predicate logic is not a non
monotonic system, so that DTrees is not a subse
of predicate logic. And this raises an importan
question of semantics: informal understandin1

114 Expert Systems, May 1987. Vol. 4, No. 2.

I

Figure 8. Rules ‘a’ and ‘b’ used in discussion
of semantacs

aside what is the meaning of a system of DTrees,
in what sense is a DTree decision a correct one?

3.4 A semantics for DTrees
To answer this question we will do two things.
First, given any rule (expressed as a bi-con-
ditional) for deciding a sentence Pa we show how
to construct an equivalent DTree representation.
Secondly, given a DTree we shall show how to
construct an equivalent sentential rule. To save
clutter we will suppress reference to variables and
the universal quantifier. Thus in what follows:

VX (Px t, (-ax + Rx))

would be represented by:

PH(Q v R)

Suppose that the rule for a feature P i s given by
the bi-conditional (iff):

(I) P <-> A(Ql.-. Q,)

where A represents a truth function of the
features Qi. It is well known that every such truth
function is equivalent to a disjunctive normal
form; that is a disjunction D, v D2 v..... v D,
where each Di is a conjunction of features or
negated features. Suppose that Di is in fact

DTree at (a) in the figure below is a DTree for the
rule:

Q1 & ... & Qk & - Qk+l & ... & -Q,. The

for each of the nodes of colour Yes in the given
DTree. Prolog itself guarantees that the ‘if
clauses together amount to ‘if and only if. The
use of negation as failure corresponds to the
simple default mechanism that we have de-
scribed. The standard Prolog depth first left right

Expert Systems, May 1987. Vol. 4, No. 2.

One sees this by noting that the only way to
obtain a stickNode of colour ‘Yes’ on this DTree
is to make the right-hand side of 2) true. For you
need to access Qk and then ‘stick’ there.

Now construct such DTrees for each of the
disjuncts Di and finally identify the origins of all
of them. This is a DTree equivalent to the rule
(l), for if (1) gives P true then the right side of (1)
is true and so some disjunct as at (2) is true also.
But then there is a stickNode with colour Yes. If
(1) decides P false then the right side of (1) is false
so none of the disjuncts as at (2) is true. But then
there are no stickNodes with colour Yes on any of
the subtrees. So the DTree too decides ‘No’.
Thus we can build a DTree to represent any rule
which is given as a truth function of features.

Conversely, given a DTree one can construct a
sentential representation of the rule it represents.
The process is essentially the reverse of that just
given. In a DTree D every node x determines a
path back to the origin. Let x,,x l...x,,x be the
path leading to x and yl.. .yk be the children of x
(if such there be). Then the characteristic
formula for the node x is:

(3) T & P, & .. & P, & P & -Qk+. , & -. & Y Q , + ~

where Pi, Qi are the features labelling the
respective nodes, and T is a sentence always true
(since the origin is always accessed). We hope it is
clear that x is a stickNode in the DTree just in
case the characteristic formula for x is true. Now
form the disjunction V = C1 v...v C, of the
characteristic formulas of all nodes with colour
Yes on the DTree. If D is for a feature P then the
formula P <-* V is seen to be a sentential rep-
resentation of the DTree rule. As an example, the
DTree in Figure b) above has the characteristic
formula below:

(T & R & S) v (T & U & T R)

We are now in a position to answer precisely
the question raised at the outset: ‘In what sense
are DTree decisions correct?’ Since DTrees are
equivalent to bi-conditionals, we can say that if
the corresponding bi-conditional is true, and if
the features assumed of the object are true, and if
[finally) the default values accessed by the system
are also allowed to be true, then the decision
given by DTrees is true also. For it is a logical
consequence of these. In short: assumptions plus
used defaults plus DTree rules logically imply
DTree decision. This can be shown rigorously
but we shall not do so here. The important thing
is to find the sentential analogues for graphical
DTree structures so that we can sensibly speak of
them entering into relations of logical implication
at all, and this we have done.

One final point. The characteristic formula of a
DTree has a rather direct Prolog representation.
In fact construct clauses:

115

search happens also to be the search regime cho-
sen for DTrees. Thus DTrees, with its structure
of exceptions could be used to help construct
Horn Clause representations of legislation.

4. Representing the law
The claim has been made (primarily by Marek
Sergot [21] and in several unpublished notes) that
logic programming is ideally suited to the sort of
applications we have just described. It is ofcourse
not controversial that the language Prolog is
suitable for such applications - indeed, Peter
Hammond [22] has reported on the encoding of a
part of the Social Security legislation in it.
Sergot’s claim is rather that some, or even all,
legislation can be usefully represented as a
collection of Horn Clauses. This is a claim not
about a programming language but about the
law.

We doubt that all legislation can be so rep-
resented. Some writers (see [23]) will dispute that
the law can be codified as a set of rules at all. Even
on a more traditional view (see [24]) which
accepts the rule paradigm, we can hardly move
from this to allowing that the extremely simple
Horn Clause provides an adequate form for the
whole of the law. Be that as it may, it is the weaker
claim that a lot of law can usefully be so rep-
resented which is the one that matters here. That
it can be so we do not wish to dispute (after all we
saw in the last section how any DTree can be
represented as a set of Horn Clauses). However,
that a Horn Clause representation is a useful one
seems to us more open to argument.

It is our contention that such a representation
is insufficiently scrutable. Despite the enthusi-
asm of such as Kowalski [25] for Predicate Logic,
one of the authors has been teaching it for some
years and the plain fact is that as few people can
manage logic as can manage mathematics (not, in
fact, exactly the same few).

Furthermore, the difficulty people experience
with logic occurs when they are using it in a be-
nign environment: the problems they are set are
designed to be accessible. The legislative
environment is far from friendly. Our colleague
Mary Whittaker has recently been translating the
rules and guidelines relating to student claims for
benefit into a Horn Clause like format (but Lisp
based). She reports numerous difficulties: repeti-
tions of rules in slightly different forms, dis-
crepancies and apparent contradictions (arising
generally out of case law), general lack of clarity,
and the use both of identical forms of words to
mean different things and different forms of

6. References
[l] Philip Leith, ‘Legal Expert Systems:

Misunderstanding the Legal Process’,
Computers and the Law, 49, 1986.

[2] Allison Adam and Andrew Taylor, ‘Model-
ling Analogical Reasoning for Legal Appli-
cations’, in Research and Development in
Expert Systems, iii, ed. M.A. Bramer,
Cambridge University Press, 1986.

words to mean the same things. She also noted
,hat the exceptions to rules are often difficult to
letermine, and when they have been found it i!,
lifficult to insert all the ‘nots’ into the rules
properly.

The idea that the law is structured through
zxceptions is the root of DTrees. This idea under-
lies the explanation mechanism we have
described and makes possible the graphical inter-
face. It solves at once the problem of floating
nots’ and, we think, generally helps the
knowledge engineer structure a legislative
iomain .

Furthermore it is much easier to learn than i\
Predicate Logic. This is important. For if a piece
3f automated legislation is eventually to be used,
then the representation of the law that it imple-
ments will have to be validated by persons with
sufficient authority to do so. Such persons are
likely to lack knowledge of logic and even if they
don’t are unlikely to be willing to become
involved in a mass of Horn Clauses. But they will
still need to understand properly and in depth
[and if need be criticise and revise) whatever rep-
resentation of the law the system uses. ‘ro
appreciate the force of this point we need to recall
that the knowledge engineers are zpso j a m inter-
preting legislation. For they are re-writing it, and
any such re-writing, however conservative UI
intention, is always an interpretation and re-
quires authority.

We have argued that the DTree System, by
exploiting the structure of exceptions in the Law,
offers definite advantages over a Horn Clause
representation. But we admit that other
companies favour Horn Clauses: in particular
that they allow the use of many argument
predicates while DTrees are (presently ai least 1
restricted to one argument predicates. The
eventual goal must be to construct a form of
representation that is sufficiently powerful to
represent large amounts of legislation and
sufficiently scrutable to be used effectively. We
hope the present paper contributes a building
block to that goal by recognising the structure of
exceptions in the law and describing a system that
exploits it.

5. Acknowledgements
We are grateful for the support and criticism we
have received from fellow members of the Alvey
DHSS Large Demonstrator project, especially
Heather Hopkins, Mary Whittaker and Andrew
Taylor.

[3] Xerox Corporation: InterLisp Reference
Manual, Xerox Corporation, 1985.

[4] Daniel Bobrow and Mark Stefik, The
LOOPS Manual, Xerox Corporation, 1983.

[5] Mark Richer and William Clancey, ‘Chidon
Watch: A Graphic Interface for Viewing a
Knowledge-Based System’, IEEE Computer
Graphics and Applications, 5 , 11, 1985.

116 Expert Systems, May 1987. Vol. 4, No. 2 .

I
[6] Social Security Act 1975, HMSO, London,

1975 Social Security (Miscellaneous
Provisions) Act 1977, HMSO, London,
1977.

[7] D. Neligan, SociaLSecurity Case Law: Digest
of Commissioners’ Decisions, HMSO,
London, 1979.

[8] Mark Richer, ‘An Evaluation of Expert
System Development Too~s’, Expert
Systems, 3,3, 1986.

[9] William Swartout, ‘XPLAIN: a System for
Creating and Explaining Expert Consulting
Programs’, Artificial Intelligence, 21, 1983.

[101 Peter Jackson, ‘Explaining Expert Systems
Behaviour’, paper given at Workshop on
Explanation, Alvey IKBS Expert System
Theme, 20-21 March 1986.

[l l] William Clancey, ‘The Epistemology of a
Rule-Based Expert System - a Framework
for Explanation’, Artificial Intelligence, 20,
1983.

[12] E.H. Shortliffe, MYCIN: Computer Based
Medical Consultations, Elsevier, 1976.

[13] P. Hammond, ‘APES: A user manual’,
Research Report DOC 8219, Imperial
College, London.

[141 W. van Melle, E. Shortliffe and G. Buchanan,
‘EMYCIN: A Knowledge Engineer’s tool
for constructing Rule-Based Expert Sys-
tems’ in Rule Based Expert Systems, ed. G.
Buchanan and E. Shortliffe, Addison-Wes-
ley, 1984.

[151 Diane Warner Hasling, William Clancey
and Glenn Rennels, ‘Strategic Explanations
for a Diagnostic Consulting System’, Inter-
nadonalJourna1 of Man Machine Studies, 20,
1984.

[16] Thomas Hobbes, Leviathan, ed. C.B
MacPherson, Penguin, 1968.

[171 Karl Popper, Conjectures and Refutations
Routledge Kegan Paul, 1963.

[18] D.B. Lenat, ‘AM: An Artificial Intelligenct
approach to Discovery as Heuristic Search’
in Knowledge Based Systems in A I , eds. D.B,
Lenat and R. Davis, McGraw-Hill, 1982.

[191 Arthur Norman and Gillian Cattell, LISP 01;

the BBC Microcomputer, Acornsoft, 1983.
[20] J. McCarthy, ‘Circumscription - A form oj

Non-Monotonic Reasoning’, Artificial
Intelligence, 13, 1980.

[21] Marek Sergot, ‘The British Nationality Aci
as a Logic Program’, Communications of thc
ACM, 29,5, May 1986.

[22] P. Hammond, ‘Representation of DHSS
Regulations as a Logic Program’, Depart-
ment of Computing Report No. 82/26,
Imperial College, London, 1983.

[23] Philip Leith, ‘Clear Rules and Legal Expert
Systems’, paper given at the 2nd Inter-
national Conference, Logica, Informatica,
Dirrito, Florence, 1985.

[24] H.L.A. Hart, The Concept of Law,
Clarendon Press, 1961.
Robert Kowalski, ‘Logic For Problem
Solving’, Artificial Intelligence series, 7
Elsevier-North Holland, 1979.

About the authors
Peter Mott
Peter Molt is a lecturer in the Department of
Philosophy at Lancaster University. He received
his BA from Manchester University and did
graduate work at the University of California,
Irvine and at Warwick University. His research is
concerned with the application of mathematical
logic in Artificial Intelligence and especially with
the development of efficient and scrutable
inference techniques based on formalisms other
than first order predicate logic. He has recently
been seconded to the Department of Systems to
work on the Alvey DHSS Large Demonstrator.

Simon Brooke
Simon Brooke is a Research Associate in the
Department of Systems at Lancaster University
working on the Alvey DHSS Large Demon-
strator. He received his BA from Lancaster. His
research is concerned with the users’ view of
mechanised inference, and especially with the
problem of explanation.

Expert Systems, May 1987. Vol. 4, No. 2. 117

